
Strongly Local Hypergraph Diffusions for Clustering and
Semi-supervised Learning

Meng Liu
liu1740@purdue.edu
Purdue University

United States

Nate Veldt
nveldt@cornell.edu
Cornell University

United States

Haoyu Song
song522@purdue.edu
Purdue University

United States

Pan Li
panli@purdue.edu
Purdue University

United States

David F. Gleich
dgleich@purdue.edu
Purdue University

United States

ABSTRACT
Hypergraph-based machine learning methods are now widely rec-
ognized as important for modeling and using higher-order and
multiway relationships between data objects. Local hypergraph
clustering and semi-supervised learning specifically involve find-
ing a well-connected set of nodes near a given set of labeled vertices.
Although many methods for local graph clustering exist, there are
relatively few for localized clustering in hypergraphs. Moreover,
those that exist often lack flexibility to model a general class of hy-
pergraph cut functions or cannot scale to large problems. To tackle
these issues, this paper proposes a new diffusion-based hypergraph
clustering algorithm that solves a quadratic hypergraph cut based
objective akin to a hypergraph analog of Andersen-Chung-Lang
personalized PageRank clustering for graphs. We prove that, for
graphs with fixed maximum hyperedge size, this method is strongly
local, meaning that its runtime only depends on the size of the out-
put instead of the size of the hypergraph and is highly scalable.
Moreover, our method enables us to compute with a wide variety
of cardinality-based hypergraph cut functions. We also prove that
the clusters found by solving the new objective function satisfy
a Cheeger-like quality guarantee. We demonstrate that on large
real-world hypergraphs our new method finds better clusters and
runs much faster than existing approaches. Specifically, it runs in a
few seconds for hypergraphs with a few million hyperedges com-
pared with minutes for a flow-based technique. We furthermore
show that our framework is general enough that can also be used
to solve other p-norm based cut objectives on hypergraphs.

CCS CONCEPTS
• Mathematics of computing → Hypergraphs; • Theory of
computation→ Semi-supervised learning; •Computingmethod-
ologies→ Cluster analysis.

KEYWORDS
hypergraph, local clustering, community detection, PageRank

This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution.
WWW ’21, April 19–23, 2021, Ljubljana, Slovenia
© 2021 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC-BY 4.0 License.
ACM ISBN 978-1-4503-8312-7/21/04.
https://doi.org/10.1145/3442381.3449887

ACM Reference Format:
Meng Liu, Nate Veldt, Haoyu Song, Pan Li, and David F. Gleich. 2021.
Strongly Local Hypergraph Diffusions for Clustering and Semi-supervised
Learning. In Proceedings of the Web Conference 2021 (WWW ’21), April 19–
23, 2021, Ljubljana, Slovenia. ACM, New York, NY, USA, 12 pages. https:
//doi.org/10.1145/3442381.3449887

1 INTRODUCTION
Two common scenarios in graph-based data analysis are: (i) What
are the clusters, groups, modules, or communities in a graph? and
(ii) Given some limited label information on the nodes of the graph,
what can be inferred about missing labels? These statements cor-
respond to the clustering and semi-supervised learning problems
respectively, and while there exists a strong state of the art in al-
gorithms for these problems on graphs [3, 13, 19, 29, 34, 35, 37, 42],
research on these problems is currently highly active for hyper-
graphs [8, 17, 27, 33, 38, 40, 41] building on new types of results [15,
26, 32] compared to prior approaches [1, 20, 43]. The lack of flexi-
ble, diverse, and scalable hypergraph algorithms for these problems
limits the opportunities to investigate rich structure in data. For
example, clusters can be relevant treatment groups for statistical
testing on networks [10] or identify common structure across many
types of sparse networks [24]. Likewise, semi-supervised learning
helps to characterize subtle structure in the emissions spectra of
galaxies in astronomy data through characterizations in terms of
biased eigenvectors [23]. The current set of hypergraph algorithms
are insufficient for such advanced scenarios.

Hypergraphs, indeed, enable a flexible and rich data model that
has the potential to capture subtle insights that are difficult or impos-
sible to find with traditional graph-based analysis [5, 27, 33, 38, 40].
But, hypergraph generalizations of graph-based algorithms often
struggle with scalability and interpretation [1, 15] with ongoing
questions of whether particular models capture the higher-order
information in hypergraphs. Regarding scalablility, an important
special case for that is a strongly local algorithm. Strongly local
algorithms are those whose runtime depends on the size of the
output rather than the size of the graph. This was only recently
addressed for various hypergraph clustering and semi-supervised
learning frameworks [17, 33]. This property enables fast (seconds
to minutes) evaluation even for massive graphs with hundreds of
millions of nodes and edges [3] (compared with hours). For graphs,

2092

https://doi.org/10.1145/3442381.3449887
https://doi.org/10.1145/3442381.3449887
https://doi.org/10.1145/3442381.3449887

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Liu, et al.

perhaps the best known strongly local algorithm is the Andersen-
Chung-Lang (henceforth, ACL) approximation for personalized
PageRank [3] with applications to local community detection and
semi-supervised learning [42]. The specific problem we address is a
mincut-inspired hypergraph generalization of personalized PageRank
along with a strongly local algorithm to rapidly approximate solu-
tions. Our formulation differs in a number of important ways from
existing Laplacian [43] and quadratic function-based hypergraph
PageRank generalizations [25, 27, 31].

Although our localized hypergraph PageRank is reasonably sim-
ple to state formally (§3.2), there are a variety of subtle aspects
to both the problem statement and the algorithmic solution. First,
we wish to have a formulation that enables the richness of pos-
sible hypergraph cut functions. These hypergraph cut functions
are an essential component to rich hypergraph models because
they determine when a group of nodes ought to belong to the same
cluster or obtain a potential new label for semi-supervised learning.
Existing techniques based on star expansions (akin to treating the
hypergraph as a bipartite graph) or a clique expansion (creating
a weighted graph by adding edges from a clique to the graph for
each hyperedge) only model a limited set of cut functions [2, 32].
More general techniques based on Lovász extensions [25, 27, 40]
pose substantial computational difficulties. Second, we need a prob-
lem framework that gives sparse solutions such that they can be
computed in a strongly local fashion and then we need an algo-
rithm that is actually able to compute these—the mere existence of
solutions is insufficient for deploying these ideas in practice as we
wish to do. Finally, we need an understanding of the relationship
between the results of this algorithm and various graph quantities,
such as minimal conductance sets as in the original ACL method.

To address these challenges, we extend and employ a number of
recently proposed hypergraph frameworks. First, we show a new
result on a class of hypergraph to graph transformations [32]. These
transformations employ carefully constructed directed graph gad-
gets, along with a set of auxiliary nodes, to encode the properties of
a general class of cardinality based hypergraph cut functions. Our
simple new result highlights how these transformations not only
preserve cut values, but preserve the hypergraph conductance values
as well (§3.1). Then we localize the computation in the reduced
graph using a general strategy to build strongly local computations.
This involves a particular modification often called a “localized
cut” graph or hypergraph [4, 11, 28, 33]. We then use a squared
2-norm (i.e. a quadratic function) instead of a 1-norm that arises in
the mincut-graph to produce the hypergraph analogue to strongly
local personalized PageRank. Put another way, applying all of these
steps on a graph (instead of a hypergraph) is equivalent to a char-
acterization of personalized PageRank vector [12].

Once we have the framework in place (§3.1,§3.2), we are able
to show that an adaptation of the push method for personalized
PageRank (§3.3) will compute an approximate solution in time that
depends only on the localization parameters and is independent
of the size of a hypergraph with fixed maximum hyperedge size
(Theorem 3.5). Consequently, the algorithms are strongly local.

The final algorithm we produce is extremely efficient. It is a
small factor (2-5x) slower than running the ACL algorithm for
graphs on the star expansion of the hypergraph. It is also a small
factor (2-5x) faster than running an optimized implementation of

the ACL algorithm on the clique expansion of the hypergraph. Nev-
ertheless, for many instances of semi-supervised learning problems,
it produces results with much larger F1 scores than alternative
methods. In particular, it is much faster and performs much better
with extremely limited label information than a recently proposed
flow-based method [33].

Summary of additional contributions. In addition to pro-
viding a strongly local algorithm for the squared 2-norm (i.e. a
quadratic function) in §3.2, which gives better and faster empirical
performance (§7), we also discuss how to use a p-norm (§6) instead.
Finally, we also show a Cheeger inequality that relates our results
to the hypergraph conductance of a nearby set (§4).

Our method is the first algorithm for hypergraph clustering that
includes all of the following features: it is (1) strongly-local, (2) can
grow a cluster from a small seed set, (3) models flexible hyperedge
cut penalties, and (4) comes with a conductance guarantee.

A motivating case study with Yelp reviews.We begin by il-
lustrating the need and utility for the methods instead with a simple
example of the benefit to these spectral or PageRank-style hyper-
graph approaches. For this purpose we consider a hypothetical use
case with an answer that is easy to understand in order to compare
our algorithm to a variety of other approaches. We build a hyper-
graph from the Yelp review dataset (https://www.yelp.com/dataset).
Each restaurant is a vertex and each user is a hyperedge. This model
enables users, i.e. hyperedges, to capture subtle socioeconomic sta-
tus information as well as culinary preferences in terms of which
types of restaurants they visit and review. The task we seek to un-
derstand is either an instance of local clustering or semi-supervised
learning. Simply put, given a random sample of 10 restaurants in
Las Vegas Nevada, we seek to find other restaurants in Las Vegas.
The overall hypergraph has around 64k vertices and 616k hyper-
edges with a maximum hyperedge size of 2566. Las Vegas, with
around 7.3k restaurants, constitutes a small localized cluster.

We investigate a series of different algorithms that will identify
a cluster nearby a seed node in a hypergraph: (1) Andersen-Chung-
Lang PageRank on the star and clique expansion of the hypergraph
(ACL-Star, ACL-Clique, respectively), these algorithms are closely
related to ideas proposed in [1, 43]; (2) HyperLocal, a recent max-
imum flow-based hypergraph clustering algorithm [33]; (3) qua-
dratic hypergraph PageRank [25, 31] (which is also closely related
to [15]), and (4) our Local Hypergraph-PageRank (LHPR). These
are all strongly local except for (3), which we include because our
algorithm LHPR is essentially the strongly local analogue of (3).

The results are shown in Figure 1. The flow-based HyperLocal
method has difficulty finding the entire cluster. Flow-based methods
are known to have trouble expanding small seed sets [11, 28, 34] and
this experiment shows that same behavior. Our strongly local hyper-
graph PageRank (LHPR) slightly improves on the performance of a
quadratic hypergraph PageRank (QHPR) that is not strongly local.
In particular, it has 10k non-zero entries (of 64k) in its solution.

This experiment shows the opportunities with our approach
for large hypergraphs. We are able to model a flexible family of
hypergraph cut functions beyond those that use clique and star
expansions and we equal or outperform all the other methods. For
instance, another more complicated method [17] designed for small
hyperedge sizes showed similar performance to ACL-Clique (F1
around 0.85) and took much longer.

2093

https://www.yelp.com/dataset

Strongly Local Hypergraph Diffusions for Clustering and Semi-supervised Learning WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

ACL-Clique
P=0.80, R=0.99, F1=0.876

ACL-Star
P=0.76, R=0.98, F1=0.85

HyperLocal [33]
P=0.92, R=0.05, F1=0.10

QHPR [25, 31]
P=0.83, R=0.95, F1=0.886

LHPR (Ours)
P=0.83, R=0.98, F1=0.900

Figure 1: This figure shows locations of the ∼7,300 restaurants of Las Vegas that are reviewed on Yelp and how often algorithms
recover them from a set of 10 random seeds; our hypergraph PageRank (LHPR)methods has the highest accuracy and finds the
result by exploring only 10000 vertices total comparedwith a fully dense vector for QHPR giving a boost to scalability on larger
graphs. The colors show the regions that aremissed (red or orange) or found (blue) by each algorithmover 15 trials. HyperLocal
is a flow-based method that is known to have trouble growing small seed sets as in this experiment. (The parameters for
HyperLocal were chosen in consultation its authors; other parameters were hand tuned for best case performance.)

2 NOTATION AND PRELIMINARIES
Let G = (V ,E,w) be a directed graph with |V | = n and |E | = m.
For simplicity, we require weightswi j ≥ 1 for each directed edge
(i, j) ∈ E. We interpret an undirected graph as having two directed
edges (i, j) and (j, i). For simplicity, we assume the vertices are
labeled with indices 1 to n, so that we may use these labels to index
matrices and vectors. For instance, we define d as the length-n
out-degree vector where its ith component di =

∑
j ∈V wi j . The

incidence matrix B ∈ {0,−1, 1}m×n measures the difference of
adjacent nodes. The kth row of B corresponds to an edge, say (i, j),
and has exactly two nonzero values, 1 for the node i and -1 for the
node j. (Recall that we have directed edges, so the origin of the
edge is always 1 and the destination is always -1.)

Let H = (V , E) be a hypergraph where each hyperedge e ∈ E
is a subset of V . Let ζ = maxe ∈E |e | be the maximum hyperedge
size. With each hyperedge, we associate a splitting function fe that
we use to assess an appropriate penalty for splitting the hyperedge
among two labels or splitting the hyperedge between two clusters.
Formally, let S be a cluster and let A = e ∩ S be the hyperedge’s
nodes inside S , then fe (A) penalizes splitting e . A common choice
in early hypergraph literature was the all-or-nothing split, which
assigns a fixed value if a hyperedge is split or zero if all nodes in
the hyperedge lie in the same cluster [14, 18, 22]: fe (A) = 0 ifA = e
or A = ∅ and fe (A) = 1 otherwise (or an alternative constant).
More recently, there have been a variety of alternative splitting
functions proposed [26, 27, 32] that provide more flexibility. We
discuss more choices in the next section (§3.1). With a splitting
function identified, the cut value of any given set S can be written
as cutH(S) =

∑
e ∈E fe (e ∩ S). The node degree in this case can

be defined as di =
∑
e :i ∈e fe ({i}) [26, 33], though other types of

degree vectors can also be used in both the graph and hypergraph
case. This gives rise to a definition of conductance on a hypergraph

ϕH(S) =
cutH(S)

min(vol(S), vol(S̄)) (1)

where vol(S) = ∑
i ∈S di . This reduces to the standard definition of

graph conductance when each edge has only two nodes (ζ = 2) and
we use the all-or-nothing penality.

Diffusion algorithms for semi-supervised learning and lo-
cal clustering. Given a set of seeds, or what we commonly think

of as a reference, set R, a diffusion is any method that produces a
real-valued vector x over all the other vertices. For instance, the
personalized PageRank method uses R to define the personalization
vector or restart vector underlying the process [3]. The PageRank
solution or the sparse Andersen-Chung-Lang approximation [3] are
then the diffusion x. Given a diffusion vector x, we round it back to
a set S by performing a procedure called a sweepcut. This involves
sorting x from largest to smallest and then evaluating the hyper-
graph conductance of each prefix set Sj = {[1], [2], . . . , [k]}, where
[i] is the id of the ith largest vertex. The set returned by sweepcut
picks the minimum conductance set Sj . Since the sweepcut proce-
dures are general and standardized, we focus on the computation
of x. When these algorithms are used for semi-supervised learning,
the returned set S is presumed to share the label as the reference
(seed) set R; alternatively, its value or rank information may be
used to disambiguate multiple labels [13, 42].

3 METHOD
Our overall goal is to compute a hypergraph diffusion that will
help us perform a sweepcut to identify a set with reasonably small
conductance nearby a reference set of vertices in the graph. We ex-
plain our method: localized hypergraph quadratic diffusions (LHQD)
or also localized hypergraph PageRank (LHPR) through two trans-
formations before we formally state the problem and algorithm.
We adopted this strategy so that the final proposal is well justified
because some of the transformations require additional context to
appreciate. Computing the final sweepcut is straightforward for
hypergraph conductance, and so we do not focus on that step.

3.1 Hypergraph-to-graph reductions
Minimizing conductance is NP-hard even in the case of simple
graphs, though numerous techniques have been designed to ap-
proximate the objective in theory and practice [3, 4, 9]. A common
strategy for searching for low-conductance sets in hypergraphs
is to first reduce a hypergraph to a graph, and then apply exist-
ing graph-based techniques. This sounds “hacky” or least “ad-hoc”
but this idea is both principled and rigorous. The most common
approach is to apply a clique expansion [1, 5, 26, 43, 46], which
explicitly models splitting functions of the form fe (A) ∝ |A| |e\A|.

2094

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Liu, et al.

For instance Benson et al. [5] showed that clique expansion can be
used to convert a 3-uniform hypergraph into a graph that preserves
the all-or-nothing conductance values. For larger hyperedge sizes,
all-or-nothing conductance is preserved to within a distortion factor
depending on the size of the hyperedge. Later, Li et al. [26] were the
first to introduce more generalized notions of hyperedge splitting
functions, focusing specifically on submodular functions.

Definition 3.1. A splitting function fe is submodular if

fe (A) + fe (B) ≥ fe (A ∪ B) + fe (A ∩ B) ∀A,B ⊆ e . (2)

These authors showed that for this submodular case, clique ex-
pansion could be used to define a graph preserving conductance to
within a factor O(ζ) (ζ is the largest hyperedge size).

More recently, Veldt et al. [32] introduced graph reduction tech-
niques that exactly preserve submodular hypergraph cut functions
which are cardinality-based.

Definition 3.2. A splitting function fe is cardinality-based if

fe (A) = fe (B) whenever |A| = |B |. (3)

Cardinality-based splitting functions are a natural choice for
many applications, since node identification is typically irrelevant
in practice, and the cardinality-based model produces a cut func-
tion that is invariant to node permutation. Furthermore, most pre-
vious research on applying generalized hypergraph cut penalties
implicitly focused on cut functions are that are naturally cardinality-
based [5, 15, 20, 25, 27, 46]. Because of their ubiquity and flexibility,
in this work we also focus on hypergraph cut functions that are
submodular and cardinality-based. We briefly review the associated
graph transformation and then we build on previous work by show-
ing that these hypergraph reductions can be used to preserve the
hypergraph conductance objective, and not just hypergraph cuts.

Reduction for Cardinality-Based Cuts. Veldt et al. [32] gave
results that show the cut properties of a submodular, cardinality-
based hypergraph could be preserved by replacing each hyperedge
with a set of directed graph gadgets. Each gadget for a hyperedge
e is constructed by introducing a pair of auxiliary nodes a and b,
along with a directed edge (a,b)with weight δe > 0. For eachv ∈ e ,
two unit-weight directed edges are introduced: (v,a) and (b,v).
The entire gadget is then scaled by a weight ce ≥ 0. The resulting
gadget represents a simplified splitting function of the following
form:

fe (A) = ce ·min{|A|, |e\A|,δe }. (4)
Figure 2(b) illustrates the process of replacing a hyperedge with
a gadget. The cut properties of any submodular cardinality-based
splitting function can be exactly modeled by introducing a set of
O(|e |) or fewer such splitting functions [32]. If an approximation
suffices, only O(log |e |) gadgets are required [6].

An important consequence of these reduction results is that in or-
der to develop reduction techniques for any submodular cardinality-
based splitting functions, it suffices to consider hyperedges with
splitting functions of the simplified form given in (4). In the remain-
der of the text, we focus on splitting functions of this form, with the
understanding that all other cardinality-based submodular splitting
functions can be modeled by introducing multiple hyperedges on
the same set of nodes with different edge weights.

In Figure 2, we illustrate the procedure of reducing a small hy-
pergraph to a directed graph, where we introduce a single gadget
per hyperedge. Formally, for a hypergraph H = (V ,E), this pro-
cedure produces a directed graph G = (V̂ , Ê), with directed edge
set Ê, and node set V̂ = V ∪Va ∪Vb , where V is the set of original
hypergraph nodes. Sets Va ,Vb store auxiliary nodes, in such a way
that for each pair of auxiliary nodes a,b where (a,b) is a directed
edge, we have a ∈ Va and b ∈ Vb . This reduction technique was
previously developed as a way of preserving minimum cuts and
minimum s-t cuts for the original hypergraph. Here, we extend
this result to show that for a certain choice for node degree, this
reduction also preserves hypergraph conductance.

Theorem 3.3. Define a degree vector d for the reduced graph
G = (V̂ , Ê) such that d(v) = dv is the out-degree for each nodev ∈ V ,
and d(u) = du = 0 for every auxiliary node u ∈ Va ∪Vb . If T ∗ is the
minimum conductance set inG for this degree vector, then S∗ = T ∗∩V
is the minimum hypergraph conductance set inH = (V ,E).

Proof. From previous work on these reduction techniques [6,
32], we know that the cut penalty for a set S ⊆ V inH equals the
cut penalty in the directed graph, as long as auxiliary nodes are
arranged in a way that produces the smallest cut penalty subject to
the choice of node set S ⊆ V . Formally, for S ⊆ V ,

cutH(S) = minimize
T ⊂V̂ : S=T∩V

cutG (T), (5)

where cutG denotes the weight of directed out-edges originating
inside S that are cut in G. By our choice of degree vector, the vol-
ume of nodes inG equals the volume of the non-auxiliary nodes in
H . That is, for all T ⊆ V̂ , volG (T) =

∑
v ∈V dv +

∑
u ∈Va∪Vb du =

volG (T ∩ V) = volH(T ∩ V). Let T ∗ ⊆ V̂ be the minimum con-
ductance set in G, and S∗ = T ∗ ∩ V . Without loss of generality
we can assume that volG (T ∗) ≤ volG (T̄ ∗). Since T ∗ minimizes
conductance, and auxiliary nodes have no effect on the volume of
this set, cutG (T ∗) = minimizeT ⊂V̂ : T∩S∗ cutG (T) = cutH(S∗), and
so cutG (T ∗)/volG (T ∗) = cutH(S∗)/volH(S∗). Thus, minimizing
conductance in G minimizes conductance inH . □

3.2 Localized Quadratic Hypergraph Diffusions
Having established a conductance-preserving reduction from a
hypergraph to a directed graph, we now present a framework for
detecting localized clusters in the reduced graphG. To accomplish
this, we first define a localized directed cut graph, involving a source
and sink nodes and new weighted edges. This approach is closely
related to previously defined localized cut graphs for local graph
clustering and semi-supervised learning [4, 7, 12, 28, 34, 44], and a
similar localized cut hypergraph used for flow-based hypergraph
clustering [33]. The key conceptual difference is that we apply this
construction directly to the reduced graphG , which by Theorem 3.3
preserves conductance of the original hypergraphH . Formally, we
assume we are given a set of nodes R ⊆ V around which we wish to
find low-conductance clusters, and a parameterγ > 0. The localized
directed cut graph is defined by applying the following steps to G:
• Introduce a source node s , and for each r ∈ R define a directed
edge (s, r) of weight γdr
• Introduce a sink node t , and for each v ∈ R̄ define a directed
edge (v, t) with weight γdv .

2095

Strongly Local Hypergraph Diffusions for Clustering and Semi-supervised Learning WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

1 2

3 5

6

7

8

4

(a) original hypergraph

5

6

7

8

5

6

7

8

D

d

(b) single hyperedge
reduction gadget

1 2

3 5

6
7

8

4

A a

E

D

C

B

e

d

c

b

(c) expanded graph

1 2

3 5

6
7

8

4

A a

E

D

C

B

e

d

c

b

s

t

γ

2γ

2γ

γ

2γ3γ

2γ

2γ

(d) localized directed cut graph

Figure 2: A simple illustration of hypergraph reduction (Section 3.1) and localization (Section 3.2). (a) A hypergraph with
8 nodes and 5 hyperedges. (b) An illustration of the hyperedge transformation gadget for δ-linear splitting function. (c) The
hypergraph is reduced to a directed graph by adding a pair of auxiliary nodes for eachhyperedge and this preserves hypergraph
conductance computations (Theorem 3.3). (d) The localized directed cut graph is created by adding a source node s, a sink node
t and edges from s to hypergraph nodes or from hypergraph nodes to t to localize a solution.

We do not connect auxiliary nodes to the source or sink, which is
consistent with the fact that their degree is defined to be zero in
order for Theorem 3.3 to hold. We illustrate the construction of the
localized directed cut graph in Figure 2(d). It is important to note
that in practice we do not in fact form this graph and store it in
memory. Rather, this provides a conceptual framework for finding
localized low-conductance sets in G, which in turn correspond to
good clusters inH .

Definition: Local hypergraph quadratic diffusions. Let B
and w be the incidence matrix and edge weight vector of the lo-
calized directed cut graph with γ . The objective function for our
hypergraph clustering diffusion, which we call local hypergraph
quadratic diffusion or simply local hypergraph PageRank, is

minimize
x

1
2w

T (Bx)2+ + κγ
∑
i ∈V xidi

subject to xs = 1,xt = 0, x ≥ 0.
(6)

We use the function (x)+ = max{x , 0}, applied element-wise to Bx,
to indicate we only keep the positive elements of this product. This
is analogous to the fact that we only view a directed edge as being
cut if it crosses from the source to the sink side; this is similar to
previous directed cut minorants on graphs and hypergraphs [39].
The first term in the objective corresponds to a 2-norm minorant of
the minimum s-t cut objective on the localized directed cut graph.
(In an undirected regular graph, the term wT (Bx)+ turns into an
expression with the Laplacian, which can in turn be formally related
to PageRank [12]). If instead, we replace exponent 2 with a 1 and
ignore the second term, this would amount to finding a minimum
s-t cut (which can be solved via a maximum flow). The second term
in the objective is included to encourage sparsity in the solution,
where κ ≥ 0 controls the desired level of sparsity. With κ > 0 we
are able to show in the next section that we can compute solutions
in time that depends only on κ,γ , and vol(R), which allows us to
evaluate solutions to (6) in a strongly local fashion.

3.3 A strongly local solver for LHQD (6)
In this section, we will provide a strongly local algorithm to approx-
imately satisfy the optimality conditions of (6). We first state the
optimality conditions in Theorem 3.4, and then present the algo-
rithm to solve them. The simplest way to understand this algorithm
is as a generalization of the Andersen-Chung-Lang push procedure

for PageRank [3], which we will call ACL as well as the more recent
nonlinear push procedure [28]. Two new challenges about this new
algorithm are: (1) the new algorithm operates on a directed graph,
which means unlike ACL there is no single closed form update at
each iteration and (2) there is no sparsity regularization for aux-
iliary nodes, which will break the strongly local guarantees for
existing analyses of the push procedure.

We begin with the optimality conditions for (6).

Theorem 3.4. Fix a seed set R, γ > 0, κ > 0, define a residual
function r(x) = − 1

γ B
T diag((Bx)+)w. A necessary and sufficient con-

dition to satisfy the KKT conditions of (6) is to find x∗ where x∗ ≥ 0,
r(x∗) = [rs , gT , rt]T with дi ≤ κdi (where d reflects the graph before
adding s and t but does include the 0 degree nodes), (κdi −дi)T x∗i = 0
for i ∈ V and дi = 0 for all auxilary nodes added.

It is a straightforward application of determining optimality
conditions for convex programs. Detailed proof of this would be
included in a longer version of this material. We further note that
solutions x∗ are unique because the problem is strongly convex due
to the quadratic.

In §3.1, we have shown that the reduction technique of any car-
dinality submodular-based splitting function suffices to introduce
multiple directed graph gadgets with different δe and ce . In order
to simplify our exposition, we assume that each hyperedge has a
δ -linear threshold splitting function [33] fe = min{|A|, |e\A|,δ }
with δ ≥ 1 to be a tunable parameter. This splitting function can
be exactly modeled by replacing each hyperedge with one directed
graph gadget with ce = 1 and δe = δ . (This is what is illustrated
in Figure 2.) Also when δ = 1, it models the standard unweighted
all-or-nothing cut [14, 18, 22] and when δ goes to infinity, it models
star expansion [46]. Thus this splitting function can interpolate
these two common cut objectives on hypergraphs by varying δ .

By assuming that we have a δ -linear threshold splitting function,
this means we can associate exactly two auxiliary nodes with each
hyperedge. We call these a and b for simplicity. We also let Va be
the set of all a auxilary nodes and Vb be the set of all b nodes.

At a high level, the algorithm to solve this proceeds as follows:
whenever there exists a graph node i ∈ V that violates optimality,
i.e. ri > κdi , we first perform a hyperpush at i to increase xi so
that the optimality condition is approximately satisfied, i.e., ri =

2096

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Liu, et al.

Algorithm1 LHQD(γ ,κ, ρ) for setR and hypergraphH withδ -linear
penalty where 0 < ρ < 1 determines accuracy

1: Let x=0 except for xs =1 and set r=−γ−1BT diag((Bx)+)w(δ ,γ).
2: While there is any vertex i ∈ V where ri > κdi , or stop if none

exists (find an optimality violation)
3: Perform LHQD-hyperpush at vertex i so that ri = ρκdi , up-

dating x and r. (satisfy optimality at i)
4: For each pair of adjacent auxiliary nodes a, b where a ∈ Va ,

b ∈ Vb and a → b, perform LHQD-auxpush at a and b so that
ra = rb = 0, then update x and r after each auxpush.

5: Return x

ρκdi where 0 < ρ < 1 is a given parameter that influences the
approximation. This changes the solution x only at the current node
i and residuals at adjacent auxiliary nodes. Then we immediately
push on adjacent auxiliary nodes, which means we increase their
value so that the residuals remain zero. After pushing each pair (a,b)
of associated auxiliary nodes, we then update residuals for adjacent
nodes in V . Then we search for another optimality violation. (See
Algorithm 1 for a formalization of this strategy.) When ρ < 1,
we only approximately satisfy the optimality conditions; and this
approximation strategy has been repeatedly and successfully used
in existing local graph clustering algorithms [3, 12, 28].

Notes on optimizing the procedure. Algorithm 1 formalizes
a general strategy to approximately solve these diffusions. We now
note a number of optimizations that we have found to greatly
accelerate this strategy. First, note that x and r can be kept as
sparse vectors with only a small set of entries stored. Second, note
that we can maintain a list of optimality violations because each
update to x only causes r to increase, so we can simply check if each
coordinate increase creates a new violation and add it to a queue.
Third, to find the value that needs to be “pushed” to each node, a
general strategy is to use a binary search procedure as we will use
for the p-norm generalization in §6. However, if the tolerance of
the binary search is too small, it will slow down each iteration. If
the tolerance is too large, the solution will be too far away from
the true solution to be useful. In the remaining of this section, we
will show that in the case of quadratic objective (6), we can (i)
often avoid binary search and (ii) when it is still required, make
the binary search procedure unrelated to the choice of tolerance
in those iterations where we do need it. These detailed techniques
will not change the time complexity of the overall algorithm, but
make a large difference in practice.

We will start by looking at the expanded formulations of the
residual vector. When i ∈ V , ri expands as:

ri =
1
γ

∑
b ∈Vb

wbi (xb−xi)+−
1
γ

∑
a∈Va

wia (xi−xa)++di [Ind(i ∈ R)−xi].

(7)
Similarly, for each a ∈ Va , b ∈ Vb where a → b, they will share the
same set of original nodes and their residuals can be expanded as:

ra = −wab (xa − xb) +
∑
i ∈V wia (xi − xa)+

rb = wab (xa − xb) −
∑
i ∈V wbi (xb − xi)+

(8)

Note here we use a result that xa ≥ xb (Lemma A.1).

Algorithm 2 LQHD-hyperpush(i,γ ,κ, x, r, ρ)
1: Solve ∆xi with s

(i)
a , s(i)b , a(i)min and b(i)min using (9). (assume the

order of i doesn’t change among its adjacent nodes)
2: if (10) doesn’t hold (adding ∆xi changed the order of i) then
3: Binary search on ∆xi until we find the smallest interval

among all adjacent nodes of i that will include xi + ∆xi ,
update s(i)a , s(i)b , a(i)min and b(i)min .

4: Solve ∆xi with the found interval by setting ri = ρκdi in (7).
5: end if
6: Update x and r, xi ← xi + ∆xi , ri ← ρκdi

The goal in each hyperpush is to first find∆xi such that r ′i = ρκdi
and then in auxpush, for each pair of adjacent auxiliary nodes (a,b),
find ∆xa and ∆xb such that r ′a and r ′b remain zero. (∆xi , ∆xa and
∆xb are unique because the quadratic is strongly convex.) Observe
that ri , ra and rb are all piecewise linear functions, which means
we can derive a closed form solution once the relative ordering
of adjacent nodes is determined. Also, in most cases, the relative
ordering won’t change after a few initial iterations. So we can first
reuse the ordering information from last iteration to directly solve
∆xi , ∆xa and ∆xb and then check if the ordering is changed.

Given these observations, we will record and update the fol-
lowing information for each pushed node. Again, this information
can be recorded in a sparse fashion. When the pushed node i is a
original node, for its adjacent a ∈ Va and b ∈ Vb , we record:

• s
(i)
a : the sum of edge weightswia where xa < xi

• s
(i)
b : the sum of edge weightswbi where xb > xi

• a
(i)
min : the minimum xa where xa ≥ xi

• b
(i)
min : the minimum xb where xb > xi

Now assume the ordering is the same, r ′i can be written as r ′i =
ri − 1

γ (s
(i)
a + s

(i)
b)∆xi = ρκdi , so

∆xi = γ (ri − ρκdi)/(s(i)a + s(i)b). (9)

Then we need to check whether the assumption holds by checking

xi + ∆xi ≤ min
(
a
(i)
min ,b

(i)
min

)
(10)

If not, we need to use binary search to find the new location of
xi + ∆xi (Note ∆xi here is the true value that is still unknown),
update s(i)a , s(i)b , a(i)min and b(i)min and recompute ∆xi . This process is
summarized in LQHD-hyperpush.

Similarly, when the pushed nodes a ∈ Va , b ∈ Vb where a → b,
are a pair of auxiliary nodes, for its adjacent nodes i ∈ V , we record:

• za : the sum of edge weightswia where xa < xi
• zb : the sum of edge weightswbi where xb > xi

• x
(a)
min : the minimum xi where xa < xi

• x
(b)
min : the minimum xi where xb < xi

2097

Strongly Local Hypergraph Diffusions for Clustering and Semi-supervised Learning WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

Algorithm 3 LQHD-auxpush(i,a,b,γ , x, r,∆xi)
1: Solve ∆xa , ∆xb with za , zb , x

(a)
min and x (b)min using (11).

2: if (12) doesn’t hold. (adding ∆xa ,∆xb altered the order) then
3: Binary search on ∆xa until we find the smallest interval

among all adjacent original nodes of a that will include xa +
∆xa , update za , x (a)min , similarly for zb , x

(b)
min .

4: Solve ∆xa ,∆xb with the found intervals by setting ra = rb =
0 in (8).

5: end if
6: Change the following entries in x and r to update the solution

and the residual
7: (a) xa ← xa+ ∆xa and xb ← xb+ ∆xb
8: (b) For each neighboring node i → a where i ∈ V , ri ←

ri+
1
γ wia (xi−xa)+− 1

γ wia (xi− xa−∆xa)+ − 1
γ wbi (xb− xi)++

1
γ wbi (xb+∆xb− xi)+

Then we solve ∆xa , ∆xb by solving the following linear system
(here we assume xb ≥ xi)

−wab (∆xa − ∆xb) +

wia
γ
((x ′i − xa)+ − (xi − xa)+) − za∆xa = 0

wab (∆xa − ∆xb) −
wbi
γ
((xb − x ′i)+ − (xb − xi)+) + zb∆xb = 0

(11)
where x ′i refers to the updated xi after applying LQHD-hyperpush
at node i . And the assumption will hold if and only if the following
inequalities are all satisfied:

x ′i ≤ xb , xa + ∆xa ≤ x
(a)
min , xb + ∆xb ≤ x

(b)
min (12)

If not, we also need to use binary search to update the locations of
xa + ∆xa and xb + ∆xb , update za , zb , x

(a)
min , x

(b)
min and recompute

∆xa and ∆xb .
Establishing a runtime bound. The key to understand the

strong locality of the algorithm is that after each LQHD-hyperpush,
the decrease of ∥vд∥1 can be lower bounded by a value that is inde-
pendent of the total size of the hypergraph, while LHQD-auxpush
doesn’t change ∥g∥1. Formally, we have the following theorem:

Theorem 3.5. Given γ > 0, κ > 0, δ > 0 and 0 < ρ < 1.
Suppose the splitting function fe is submodular, cardinality-based and
satisfies 1 ≤ fe ({i}) ≤ δ for any i ∈ e . Then calling LQHD-auxpush
doesn’t change ∥g∥1 while calling LQHD-hyperpush on node i ∈ V
will decrease ∥g∥1 by at least γκ(1 − ρ)di/(γκ + δ).

Suppose LHQD stops after T iterations and di is the degree of the
original node updated at the i-th iteration, then T must satisfy:∑T

i=1 di ≤ (γκ + δ)vol(R)/γκ(1 − ρ) = O(vol(R)).
The proof is in the appendix. This theorem only upper bounds

the number of iterations Algorithm 1 requires. Each iteration will
also take O(∑e ∈E,i ∈e |e |) amount of work. This ignores the binary
search, which only scales it by log(max{di ,maxe ∈E,i ∈e {|e |}}) fac-
tor in the worst case. Putting these pieces together shows that if
we have a hypergraph with independently bounded maximum hy-
peredge size, then we can treat this additional work as a constant.
Consequently, our solver is strongly local for graphs with bounded
maximum hyperedge size; this matches the interpretation in [33].

4 LOCAL CONDUCTANCE APPROXIMATION
We give a local conductance guarantee that results from solving (6).
Because of space, we focus on the case κ = 0. We prove that a
sweepcut on the solution x of (6) leads to a Cheeger-type guarantee
for conductance of the hypergraphH even when the seed-set size
|R | is 1. It is extremely difficult to guarantee a good approximation
property with an arbitrary seed node, and so we first introduce a
seed sampling strategy P with respect to a set S∗ that we wish to
find. Informally, the seed selection strategy says that the expected
solution mass outside S∗ is not too large, and more specifically, not
too much larger than if you had seeded on the entire target set S∗.

Definition 4.1. Denote x(γ ,R) as the solution to (6) with κ = 0.
A good sampling strategy P for a target set S∗ is

Ev ∈P

1
dv

∑
u ∈V \S∗

duxu (γ , {v})

≤ c

vol(S∗)
∑

u ∈V \S∗
duxu (γ , S∗)

for some positive constant c .

Note that vol(S∗) is just to normalize the effect of using different
numbers of seeds. For an arbitrary S∗, a good sampling strategy P
for the standard graph case with c = 1 is to sample nodes from S∗
proportional to their degree. Now, we provide our main theorem
and show its proof in Appendix B .

Theorem 4.2. Given a set S∗ of vertices s.t. vol(S∗) ≤ vol(H)
2

and ϕH(S∗) ≤ γ
8c for some positive constant γ , c . If we have a seed

sampling strategy P that satisfies Def. 4.1, then with probability at
least 1

2 , sweepcut on (6) with find Sx with

ϕ(Sx) ≤
√

32γδ̄ ln (100vol(S∗)/dv),
where δ̄ = maxe ∈∂Sx min{δe , |e |/2} where ∂Sx = {e ∈ E|e ∩ Sx ,
∅, e ∩ S̄x , ∅} and v is the seeded node.

The proof is in the appendix. This implies that for any set S∗, if
we have a sampling strategy that matches S∗, our method can find a
node set with conductance O(

√
ϕH(S∗)δ̄ log(vol(S∗))) after tuning

γ . The term δ̄ is the additional cost that we pay for performing
graph reduction. The dependence on δ̄ essentially generalizes the
previous works that analyzed the conductance with only all-or-
nothing penalty [25, 31], as our result matches these when δ̄ = 1.
But our method gives the flexibility to choose other values δe and
while δ̄ in the worst case could be as large as |e |/2, in practice, δ̄
can be chosen much smaller (See §7). Also, although we reduce
H into a directed graphG, the previous conductance analysis for
directed graphs [25, 39] is not applicable as we have degree zero
nodes in G. Those degree zero nodes introduce challenges.

5 DIRECTLY RELATEDWORK
We have discussed most related work in-situ throughout the paper.
Here, we address a few related hypergraph PageRank vectors di-
rectly. First, Li et al. [25] defined a quadratic hypergraph PageRank
by directly using Lovász extension of the splitting function fe to
control the diffusion instead of a reduction. Both Li et al. [25] and
Takai et al. [31] simultaneously proved that this PageRank can be
used to partition hypergraphs with an all-or-nothing penalty and a

2098

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Liu, et al.

Cheeger-type guarantee. Neither approach gives a strongly local al-
gorithm and they have complexity O(|E | |V |min{|E |, |V |}poly(ζ))
or in terms of Euler integration or subgradient descent.

6 GENERALIZATION TO P-NORMS
In the context of the local graph clustering, the quadratic cut ob-
jective can sometimes “over-expand” or “bleed out” over natural
boundaries in the data. (This is the opposite problem to themaxflow-
based clustering.) To solve this issue, [28] proposed a more general
p-norm based cut objective, where 1 < p ≤ 2. The corresponding
p-norm diffusion algorithm can not only grow from small seed set,
but also capture the boundary better than 2-norm cut objective.
Moreover, [37] proposed a related p-norm flow objective that shares
similar characteristics. Our hypergraph diffusion framework easily
adapts to such a generalization.

Definition: p-norm local hypergraph diffusions. Given a
hypergraph H = (V , E), seeds R, and values γ ,κ. Let B,w again
be the incidence matrix and weight vector of the localized reduced
directed cut graph. A p-norm local hypergraph diffusion is:

minimize
x

wT ℓ((Bx)+) + κγ
∑
i ∈V xidi

subject to xs = 1,xt = 0, x ≥ 0.
(13)

Here ℓ(x) = 1
p x

p , 1 < p ≤ 2. And the corresponding residual
function is r(x) = − 1

γ B
T diag(ℓ′((Bx)+))w.

The idea of solving (13) is similar to the quadratic case, where
the goal is to iteratively push values to xi as long as node i violates
the optimality condition, i.e. ri > κdi . The challenge of solving
a more general p-norm cut objective is that we no longer have
a closed form solution even if the ordering of adjacent nodes is
known. Thus, we need to use binary search to find ∆xi , ∆xa and
∆xb up to ε accuracy at every iteration. This means that in the
worst case, the general push process can be slower than 2-norm
based push process by a factor of O(log(1/ε)). We defer the details
of the algorithm to a longer version of the paper, but we note that
a similar analysis shows that this algorithm is strongly local.

7 EXPERIMENTS
In the experiments, we will investigate both the LHQD (2-norm)
and 1.4-norm cut objectives with the δ -linear threshold as the split-
ting function (more details about this function in §3.3). Our focus in
the experiments is on the use of the methods for semi-supervised
learning. Consequently, we consider how well the algorithms iden-
tify “ground truth” clusters that represent various known labels
in the datasets when given a small set of seeds. (We leave detailed
comparisons of the conductances to a longer version.)

In the plots and tables, we use LH-2.0 to represent our LHQD or
LHPR method and LH-1.4 to represent the 1.4 norm version from
§6. The other four methods we compare are:
(i) ACL [3], which is initially designed to compute approximated
PageRank on graphs. Here we transform each hypergraph to a
graph using three different techniques, which are star expansion
(star+ACL), unweighted clique expansion (UCE+ACL) andweighted
clique expansion (WCE+ACL) where a hyperedge e is replaced by a
clique where each edge has weight 1/|e | [43]. ACL is known as one
of the fastest andmost successful local graph clustering algorithm in
several benchmarks [28, 34] and has a similar quadratic guarantee

on local graph clustering [3, 45].
(ii) flow [33], which is the maxflow-mincut based local method
designed for hypergraphs. Since the flow method has difficulty
growing from small seed set as illustrated in the yelp experiment
in §1, we will first use the one hop neighborhood to grow the seed
set. (OneHop+flow) To limit the number of neighbors included,
we will order the neighbors using the BestNeighbors as introduced
in [33] and only keep at most 1000 neighbors. (Given a seedset R,
BestNeighbors orders nodes based on the fraction of hyperedges
incident to v that are also incident to at least one node from R.)
(iii) LH-2.0+flow, this is a combination of LH-2.0 and flow where we
use the output of LH-2.0 as the input to the flow method to refine.
(iv) HGCRD [17], this is a hypergraph generalization of CRD [36],
which is a hybrid diffusion and flow.1

In order to select an appropriate δ for different datasets, Veldt et
al. found that the optimal δ is usually consistent among different
clusters in the same dataset [33]. Thus, the optimal δ can be visually
approximated by varying δ for a handful of clusters if one has access
to a subset of ground truth clusters in a hypergraph. We adapt the
same procedure in our experiments and report the results in App. C.
Other parameters are in the reproduction details footnote.2

7.1 Detecting Amazon Product Categories
In this experiment, we use different methods to detect Amazon
product categories [30]. The hypergraph is constructed from Ama-
zon product review data where each node represents a product and
each hyperedge is set of products reviewed by the same person. It
has 2,268,264 nodes and 4,285,363 hyperedges. The average size of
hyperedges is around 17. We select 6 different categories with size
between 100 and 10000 as ground truth clusters used in [33]. We
set δ = 1 for this dataset (more details about this choice in §C). We
select 1% nodes (at least 5) as seed set for each cluster and report
median F1 scores and median runtime over 30 trials in Table 1 and 2.
Overall, LH-1.4 has the best F1 scores and LH-2.0 has the second
best F1. The two fastest methods are LH-2.0 and star+ACL. While
achieving better F1 scores, LH-2.0 is 20x faster than HyperLocal
(flow) and 2-5x faster than clique expansion based methods.

7.2 Detecting Stack Overflow Question Topics
In the Stack Overflow dataset, we have a hypergraph with each
node representing a question on “stackoverflow.com” and each
hyperedge representing questions answered by the same user [33].
Each question is associated with a set of tags. The goal is to find
questions having the same tag when seeding on some nodes with a
given target tag. This hypergraph is much larger with 15,211,989

1Another highly active topic for clustering and semi-supervised learning involves
graph neural networks (GNN). Prior comparisons between GNNs and diffusions shows
mixed results in the small seed set regime we consider [16, 28] and complicates doing a
fair comparison. As such, we focus on comparing with the most directly related work.
2Reproduction details. The full algorithm and evaluation codes can be found here
https://github.com/MengLiuPurdue/LHQD. We fix the LH locality parameter γ to be
0.1, approximation parameter ρ to be 0.5 in all experiments. We set κ = 0.00025 for
Amazon and κ = 0.0025 for Stack Overflow based on cluster size. For ACL, we use
the same set of parameters as LH. For LH-2.0+flow, we set the flow method’s locality
parameter to be 0.1. For OneHop+flow, we set the locality parameter to be 0.05, 0.0025
on Amazon and Stack Overflow accordingly. For HGCRD, we setU = 3 (maximum
flow that can be send out of a node), h = 3 (maximum flow that an edge can handle),
w = 2 (multiplicative factor for increasing the capacity of the nodes at each iteration),
α = 1 (controls the eligibility of hyperedge), τ = 0.5 and 6 maximum iterations.

2099

https://github.com/MengLiuPurdue/LHQD

Strongly Local Hypergraph Diffusions for Clustering and Semi-supervised Learning WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

Table 1: Median F1 scores on detecting Amazon product cat-
egories over 30 trials, the small violin plots show variance.

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Liu, et al.

p-norm based cut objective, where 1 < p ≤ 2. The corresponding
p-norm diffusion algorithm can not only grow from small seed set,
but also capture the boundary better than 2-norm cut objective.
Moreover, [37] proposed a related p-norm flow objective that shares
similar characteristics. Our hypergraph diffusion framework easily
adapts to such a generalization.

Definition: p-norm local hypergraph diffusions. Given a
hypergraph H = (V , E), seeds R, and values γ ,κ. Let B,w again
be the incidence matrix and weight vector of the localized reduced
directed cut graph. A p-norm local hypergraph diffusion is:

minimize
x

wT ℓ((Bx)+) + κγ
∑
i ∈V xidi

subject to xs = 1, xt = 0, x ≥ 0.
(13)

Here ℓ(x) = 1
p x

p , 1 < p ≤ 2. And the corresponding residual
function is r(x) = − 1

γ B
T diag(ℓ′((Bx)+))w.

The idea of solving (13) is similar to the quadratic case, where
the goal is to iteratively push values to xi as long as node i violates
the optimality condition, i.e. ri > κdi . The challenge of solving
a more general p-norm cut objective is that we no longer have
a closed form solution even if the ordering of adjacent nodes is
known. Thus, we need to use binary search to find ∆xi , ∆xa and
∆xb up to ε accuracy at every iteration. This means that in the
worst case, the general push process can be slower than 2-norm
based push process by a factor of O(log(1/ε)). We defer the details
of the algorithm to a longer version of the paper, but we note that
a similar analysis shows that this algorithm is strongly local.

7 EXPERIMENTS
In the experiments, we will investigate both the LHQD (2-norm)
and 1.4-norm cut objectives with the δ -linear threshold as the split-
ting function (more details about this function in §3.3). Our focus in
the experiments is on the use of the methods for semi-supervised
learning. Consequently, we consider how well the algorithms iden-
tify “ground truth” clusters that represent various known labels
in the datasets when given a small set of seeds. (We leave detailed
comparisons of the conductances to a longer version.)

In the plots and tables, we use LH-2.0 to represent our LHQD or
LHPR method and LH-1.4 to represent the 1.4 norm version from
§6. The other four methods we compare are:
(i) ACL [3], which is initially designed to compute approximated
PageRank on graphs. Here we transform each hypergraph to a
graph using three different techniques, which are star expansion
(star+ACL), unweighted clique expansion (UCE+ACL) andweighted
clique expansion (WCE+ACL) where a hyperedge e is replaced by a
clique where each edge has weight 1/|e | [43]. ACL is known as one
of the fastest andmost successful local graph clustering algorithm in
several benchmarks [28, 34] and has a similar quadratic guarantee
on local graph clustering [3, 45].
(ii) flow [33], which is the maxflow-mincut based local method
designed for hypergraphs. Since the flow method has difficulty
growing from small seed set as illustrated in the yelp experiment
in §1, we will first use the one hop neighborhood to grow the seed
set. (OneHop+flow) To limit the number of neighbors included,
we will order the neighbors using the BestNeighbors as introduced
in [33] and only keep at most 1000 neighbors. (Given a seedset R,
BestNeighbors orders nodes based on the fraction of hyperedges

Table 1: Median F1 scores on detecting Amazon product cat-
egories over 30 trials, the small violin plots show variance.

Alg 12 18 17 25 15 24
F1 & Med. F1 & Med. F1 & Med. F1 & Med. F1 & Med. F1 & Med.

LH-2.0 0.77 0.65 0.25 0.19 0.22 0.62
LH-1.4 0.9 0.79 0.32 0.22 0.27 0.77
LH-2.0+flow 0.95 0.82 0.15 0.16 0.16 0.87
star+ACL 0.64 0.51 0.19 0.15 0.2 0.49
WCE+ACL 0.64 0.51 0.2 0.14 0.21 0.51
UCE+ACL 0.27 0.09 0.06 0.05 0.11 0.14
OneHop+flow 0.52 0.6 0.16 0.12 0.09 0.22
HGCRD 0.56 0.4 0.05 0.06 0.07 0.17

incident to v that are also incident to at least one node from R.)
(iii) LH-2.0+flow, this is a combination of LH-2.0 and flow where we
use the output of LH-2.0 as the input to the flow method to refine.
(iv) HGCRD [17], this is a hypergraph generalization of CRD [36],
which is a hybrid diffusion and flow.1

In order to select an appropriate δ for different datasets, Veldt et
al. found that the optimal δ is usually consistent among different
clusters in the same dataset [33]. Thus, the optimal δ can be visually
approximated by varying δ for a handful of clusters if one has access
to a subset of ground truth clusters in a hypergraph. We adapt the
same procedure in our experiments and report the results in App. C.
Other parameters are in the reproduction details footnote.2

7.1 Detecting Amazon Product Categories
In this experiment, we use different methods to detect Amazon
product categories [30]. The hypergraph is constructed from Ama-
zon product review data where each node represents a product and
each hyperedge is set of products reviewed by the same person. It
has 2,268,264 nodes and 4,285,363 hyperedges. The average size of
hyperedges is around 17. We select 6 different categories with size
between 100 and 10000 as ground truth clusters used in [33]. We
set δ = 1 for this dataset (more details about this choice in §C). We
select 1% nodes (at least 5) as seed set for each cluster and report
median F1 scores and median runtime over 30 trials in Table 1 and 2.
Overall, LH-1.4 has the best F1 scores and LH-2.0 has the second
best F1. The two fastest methods are LH-2.0 and star+ACL. While
achieving better F1 scores, LH-2.0 is 20x faster than HyperLocal
(flow) and 2-5x faster than clique expansion based methods.

7.2 Detecting Stack Overflow Question Topics
In the Stack Overflow dataset, we have a hypergraph with each
node representing a question on “stackoverflow.com” and each
1Another highly active topic for clustering and semi-supervised learning involves
graph neural networks (GNN). Prior comparisons between GNNs and diffusions shows
mixed results in the small seed set regime we consider [16, 28] and complicates doing a
fair comparison. As such, we focus on comparing with the most directly related work.
2Reproduction details. The full algorithm and evaluation codes can be found here
https://github.com/MengLiuPurdue/LHQD. We fix the LH locality parameter γ to be
0.1, approximation parameter ρ to be 0.5 in all experiments. We set κ = 0.00025 for
Amazon and κ = 0.0025 for Stack Overflow based on cluster size. For ACL, we use
the same set of parameters as LH. For LH-2.0+flow, we set the flow method’s locality
parameter to be 0.1. For OneHop+flow, we set the locality parameter to be 0.05, 0.0025
on Amazon and Stack Overflow accordingly. For HGCRD, we setU = 3 (maximum
flow that can be send out of a node), h = 3 (maximum flow that an edge can handle),
w = 2 (multiplicative factor for increasing the capacity of the nodes at each iteration),
α = 1 (controls the eligibility of hyperedge), τ = 0.5 and 6 maximum iterations.

Table 2: Median runtime in seconds on detecting Amazon
product categories

Alg 12 18 17 25 15 24
LH-2.0 0.9 0.7 2.8 1.0 5.6 13.3
LH-1.4 8.0 6.3 32.3 9.8 53.8 127.3
LH-2.0+flow 3.5 5.1 421.1 17.8 34.9 151.5
star+ACL 0.2 0.2 0.3 0.2 0.5 0.8
WCE+ACL 18.6 17.2 19.0 16.5 21.5 20.1
UCE+ACL 9.8 10.9 11.2 10.7 13.3 15.5
OneHop+flow 308.8 141.7 359.2 224.9 81.5 82.4
HGCRD 120.3 56.4 78.1 21.2 239.4 541.3

Table 3: This table summarizes the median of median run-
times in seconds for the Stack Overflow experiments as well
as median Precision, Recall and F1 over the 40 clusters.

Alg. LH2 LH1.4 LH2 ACL ACL ACL Flow HG-
+flow +star +WCE +UCE +1Hop CRD

Time 3.69 39.89 43.84 1.54 15.25 13.71 48.28 72.31
Pr 0.65 0.66 0.74 0.66 0.65 0.66 0.83 0.46
Rc 0.67 0.67 0.59 0.6 0.66 0.65 0.11 0.01
F1 0.66 0.66 0.66 0.63 0.65 0.65 0.19 0.02

nodes and 1,103,243 edges. The average hyperedge size is around 24.
We select 40 clusters with 2,000 to 10,000 nodes and a conductance
score below 0.2 using the all-or-nothing penalty. (There are 45
clusters satisfying these conditions, 5 of them are used to select δ .)
In this dataset, a large δ can give better results. For diffusion based
methods, we set the δ -linear threshold to be 1000 (more details
about this choice in App. §C), while for flow based method, we
set δ = 5000 based on Figure 3 of [33]. In Table 3, we summarize
some recovery statistics of different methods on this dataset. In
Figure 3, we report the performance of different methods on each
cluster. Overall, LH-2.0 achieves the best balance between speed
and accuracy, although all the diffusion based methods (LH, ACL)
have extremely similar F1 scores (which is different from the last
experiment). The flow based method still has difficulty growing
from small seed set as we can see from the low recall in Table 3.

7.3 Varying Number of Seeds
In this section, we vary the ratio of seed set from 0.1% to 10%. At
each seed ratio, denoted as r , we set κ = 0.025r . And for each of

marklogic
xpages

plone

wso2esb

wolfra
m-m

athematica

sitecoreaemdax
sapui5

sprin
g-integration

statavhdl

lotus-notes

system-verilo
g

netsuite tcl
julia

abap

openerp
xslt-2

.0

codenameone

alfre
sco
prolog

docusignapi
mule jq

racket

google-bigquery

apache-nifi

netlogo
cypher

offic
e-js

google-sheets-fo
rm

ula
wso2

typo3
ocaml

sparql

ibm-m
obilefirs

t
axapta

data.ta
ble

0.0

0.2

0.4

0.6

0.8

F1

marklogic
xpages

plone

wso2esb

wolfra
m-m

athematica

sitecoreaemdax
sapui5

sprin
g-integration

statavhdl

lotus-notes

system-verilo
g

netsuite tcl
julia

abap

openerp
xslt-2

.0

codenameone

alfre
sco
prolog

docusignapi
mule jq

racket

google-bigquery

apache-nifi

netlogo
cypher

offic
e-js

google-sheets-fo
rm

ula
wso2

typo3
ocaml

sparql

ibm-m
obilefirs

t
axapta

data.ta
ble

100

101

102

103

ru
nt

im
e

Figure 3: The upper plot showsmedian F1 scores of different
methods over 40 clusters from the Stack Overflow dataset.
The lower plot showsmedian running time. LH-2.0 achieves
the best balance between speed and accuracy; LH-1.4 can
sometimes be slower than the flow method when the target
cluster contains many large hyperedges.

10 3 10 2 10 1

ratio

0.0

0.2

0.4

0.6

0.8
F1

Figure 4: This plot shows themedian of median F1 scores on
detecting those 6 clusters in the Amazon data when varying
the seed size. The envelope represents 1 standard error over
the 6 median F1 scores.

the 6 clusters, we take the median F1 score over 10 trials. To have a
global idea of how different methods perform on this dataset, we
take another median over the 6 median F1 scores. For the flow-
based method, we also consider removing the OneHop growing
procedure. The results are summarized in Figure 4. We can see
our hypergraph diffusion based method (LH-1.4, LH-2.0) performs
better than alternatives for all seed sizes especially for small seed
sets, although flow dramatically improves for large seed sizes.

8 DISCUSSION
This paper studies the opportunities for strongly local quadratic
and p-norm diffusions in the context of local clustering and semi-
supervised learning.

One of the distinct challenges we encountered in preparing this
manuscript was comparing against the ideas of others. Clique ex-
pansions are often problematic because they can involve quadratic
memory for each hyperedge if used simplistically. For running the
baseline ACL PageRank diffusion on the clique expansion, we were
able to use the linear nature of this algorithm to implicitly model
the clique expansion without realizing the actual graph in mem-
ory. (We lack space to describe this though.) For others the results

2100

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Liu, et al.

were less encouraging. We, for instance, were unable to set integra-
tion parameters for the Euler scheme employed by QHPR [31] to
produce meaningful results in §7.

Consequently, we wish to discuss the parameters of our method
and why they are reasonably easy to set. The values γ and κ both
control the size of the result. Roughly, γ corresponds to how much
the diffusion is allowed to spread from the seed vertices and κ
controls how aggressively we sparsify the diffusion. To get a bigger
result, then, set γ or κ a little bit smaller. The value of ρ corresponds
only to how much one of our solutions can differ from the unique
solution of (6). Fixing ρ = 0.5 is fine for empirical studies unless
the goal is to compare against other strategies to solve that same
equation. The final parameter is δ , which interpolates between the
all-or-nothing penalty and the cardinality penalty as discussed in
§3.2. This can be chosen based on an experiment as we did here,
or by exploring a few small choices between 1 and half the largest
hyperedge size.

In closing, flow-based algorithms have often been explained or
used as refinement operations to the clusters produced by spectral
methods [21] as in LH-2.0+flow. As a final demonstration of this
usage on the Yelp experiment from §1, we have precision, recall, and
F1 result of 0.87, 0.998, 0.93, respectively, which demonstrates how
these techniques may be easily combined to even more accurately
find target clusters.

REFERENCES
[1] Sameer Agarwal, Kristin Branson, and Serge Belongie. 2006. Higher Order

Learning with Graphs. In ICML. 17–24.
[2] Sameer Agarwal, Jongwoo Lim, Lihi Zelnik-Manor, Pietro Perona, David Krieg-

man, and Serge Belongie. 2005. Beyond Pairwise Clustering. In CVPR. 838–845.
[3] Reid Andersen, Fan Chung, and Kevin Lang. 2006. Local graph partitioning using

pagerank vectors. In FOCS. 475–486.
[4] Reid Andersen and Kevin J. Lang. 2008. An Algorithm for Improving Graph

Partitions. In SODA. 651–660.
[5] Austin Benson, David F. Gleich, and Jure Leskovec. 2016. Higher-order organiza-

tion of complex networks. Science 353 (2016), 163–166.
[6] Austin R Benson, Jon Kleinberg, and Nate Veldt. 2020. Augmented Sparsifiers for

Generalized Hypergraph Cuts. arXiv preprint arXiv:2007.08075 (2020).
[7] Avrim Blum and Shuchi Chawla. 2001. Learning from Labeled and Unlabeled

Data Using Graph Mincuts. In ICML. 19–26.
[8] Uthsav Chitra and Benjamin J. Raphael. 2019. Random Walks on Hypergraphs

with Edge-Dependent Vertex Weights. In ICML. 1172–1181.
[9] Fan R. L. Chung. 1992. Spectral Graph Theory. American Mathematical Society.
[10] D. Eckles, B. Karrer, and J. Ugander. 2017. Design and Analysis of Experiments

in Networks: Reducing Bias from Interference. J. Causal Inference 5 (2017).
[11] K. Fountoulakis, M. Liu, D. F. Gleich, and M. W. Mahoney. 2020. Flow-based

Algorithms for Improving Clusters: A Unifying Framework, Software, and Per-
formance. arXiv cs.LG (2020), 2004.09608.

[12] David Gleich and Michael Mahoney. 2014. Anti-differentiating approximation
algorithms: A case study with min-cuts, spectral, and flow. In ICML. 1018–1025.

[13] David F. Gleich and Michael W. Mahoney. 2015. Using Local Spectral Methods to
Robustify Graph-Based Learning Algorithms. In SIGKDD. 359–368.

[14] Scott W. Hadley. 1995. Approximation techniques for hypergraph partitioning
problems. Discrete Applied Mathematics 59, 2 (1995), 115 – 127.

[15] M. Hein, S. Setzer, L. Jost, and S. S. Rangapuram. 2013. The Total Variation on
Hypergraphs - Learning on Hypergraphs Revisited. In NeurIPS. 2427–2435.

[16] Rania Ibrahim and David F. Gleich. 2019. Nonlinear Diffusion for Community
Detection and Semi-Supervised Learning. In The World Wide Web Conference
(San Francisco, CA, USA) (WWW ’19). ACM, New York, NY, USA, 739–750.

[17] Rania Ibrahim and David F. Gleich. 2020. Local Hypergraph Clustering using
Capacity Releasing Diffusion. arXiv cs.SI (2020), 2003.04213.

[18] E. Ihler, D. Wagner, and F. Wagner. 1993. Modeling hypergraphs by graphs with
the same mincut properties. Inform. Process. Lett. 45 (1993), 171–175.

[19] T. Joachims. 2003. Transductive learning via spectral graph partitioning. In ICML.
290–297.

[20] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar. 1999. Multilevel hypergraph
partitioning: applications in VLSI domain. VLSI 7, 1 (March 1999), 69–79.

[21] K. Lang. 2005. Fixing twoweaknesses of the spectral method. InNeurIPS. 715–722.
[22] E. L. Lawler. 1973. Cutsets and partitions of hypergraphs. Networks 3, 3 (1973),

275–285.
[23] D. Lawlor, T. Budavári, and M. W Mahoney. 2016. Mapping the Similarities of

Spectra: Global and Locally-biased Approaches to SDSS Galaxies. Astrophys. J.
833, 1 (2016), 26.

[24] J. Leskovec, K. J. Lang, A. Dasgupta, and M. W. Mahoney. 2009. Community
Structure in Large Networks: Natural Cluster Sizes and the Absence of Large
Well-Defined Clusters. Internet Math. 6, 1 (2009), 29–123.

[25] Pan Li, Niao He, and Olgica Milenkovic. 2020. Quadratic Decomposable Submod-
ular Function Minimization: Theory and Practice. JMLR 21 (2020), 1–49.

[26] Pan Li and Olgica Milenkovic. 2017. Inhomogeneous Hypergraph Clustering
with Applications. In NeurIPS. 2308–2318.

[27] Pan Li and Olgica Milenkovic. 2018. Submodular Hypergraphs: p-Laplacians,
Cheeger Inequalities and Spectral Clustering. In ICML, Vol. 80. 3014–3023.

[28] Meng Liu and David F. Gleich. 2020. Strongly local p-norm-cut algorithms for
semi-supervised learning and local graph clustering. arXiv:2006.08569 [cs.SI]

[29] M. W. Mahoney, L. Orecchia, and N. K. Vishnoi. 2012. A Local Spectral Method
for Graphs: With Applications to Improving Graph Partitions and Exploring Data
Graphs Locally. JMLR 13 (2012), 2339–2365.

[30] Jianmo Ni, Jiacheng Li, and Julian McAuley. 2019. Justifying Recommendations
using Distantly-Labeled Reviews and Fine-Grained Aspects. In EMNLP-IJCNLP.

[31] Yuuki Takai, Atsushi Miyauchi, Masahiro Ikeda, and Yuichi Yoshida. 2020. Hy-
pergraph Clustering Based on PageRank. In KDD. 1970–1978.

[32] Nate Veldt, Austin R. Benson, and Jon Kleinberg. 2020. Hypergraph Cuts with
General Splitting Functions. arXiv:2001.02817 [cs.DS]

[33] Nate Veldt, Austin R Benson, and Jon Kleinberg. 2020. Minimizing Localized
Ratio Cut Objectives in Hypergraphs. In KDD. 1708–1718.

[34] Nate Veldt, David F. Gleich, and Michael W. Mahoney. 2016. A Simple and
Strongly-Local Flow-Based Method for Cut Improvement. In ICML. 1938–1947.

[35] Nate Veldt, Christine Klymko, and David F. Gleich. 2019. Flow-Based Local Graph
Clustering with Better Seed Set Inclusion. In SDM. 378–386.

[36] D. Wang, K. Fountoulakis, M. Henzinger, M. W. Mahoney, and S. Rao. 2017.
Capacity releasing diffusion for speed and locality. In ICML. 3598–3607.

[37] Shenghao Yang, Di Wang, and Kimon Fountoulakis. 2020. p-Norm Flow Diffusion
for Local Graph Clustering. arXiv preprint arXiv:2005.09810 (2020).

[38] Hao Yin, Austin R. Benson, Jure Leskovec, and David F. Gleich. 2017. Local
Higher-Order Graph Clustering. In KDD. 555–564.

[39] Yuichi Yoshida. 2016. Nonlinear Laplacian for digraphs and its applications to
network analysis. In WSDM. 483–492.

[40] Yuichi Yoshida. 2019. Cheeger Inequalities for Submodular Transformations. In
SODA. 2582–2601.

[41] Chenzi Zhang, Shuguang Hu, Zhihao Gavin Tang, and T-H. Hubert Chan. 2017.
Re-Revisiting Learning on Hypergraphs: Confidence Interval and Subgradient
Method. In ICML. 4026–4034.

[42] Dengyong Zhou, Olivier Bousquet, Thomas Navin Lal, Jason Weston, and Bern-
hard Schölkopf. 2003. Learning with Local and Global Consistency. In NIPS.

[43] Dengyong Zhou, Jiayuan Huang, and Bernhard Schölkopf. 2006. Learning with
Hypergraphs: Clustering, Classification, and Embedding. In NeurIPS. 1601–1608.

[44] Xiaojin Zhu, Zoubin Ghahramani, and John Lafferty. 2003. Semi-Supervised
Learning Using Gaussian Fields and Harmonic Functions. In ICML. 912–919.

[45] Zeyuan Allen Zhu, Silvio Lattanzi, and Vahab SMirrokni. 2013. A Local Algorithm
for Finding Well-Connected Clusters.. In ICML (3). 396–404.

[46] J. Y. Zien, M. D. F. Schlag, and P. K. Chan. 1999. Multilevel spectral hypergraph
partitioning with arbitrary vertex sizes. IEEE TCAD 18, 9 (1999), 1389–1399.

A PROOF OF THEOREM 3.5
First we have the following observations on r and x.

Lemma A.1. At any iteration of Algorithm 1, for each pair of
auxiliary nodes, a ∈ Va , b ∈ Vb and a → b, xa ≥ xb .

Lemma A.2. At any iteration of Algorithm 1, for any i ∈ V ∪Va ∪
Vb , дi will stay nonnegative and 0 ≤ xi ≤ 1.

Both lemmas can be easily proved by contradiction. More de-
tailed proof would be included in a longer version of this material.

Proof of Theorem 3.5. By using Lemma A.2, ∥g∥1 becomes
∥g∥1 =

∑
i ∈V∪Va∪Vb дi =

∑
i ∈R di (1 − xi) −

∑
i ∈R̄ dixi

This implies that any change to the auxiliary nodes will not affect
| |g| |1. Thus calling LHQD-auxpush doesn’t change | |g| |1.When there
exists i ∈ V such that дi > κdi , then hyper-pushwill find ∆xi such

2101

https://arxiv.org/abs/2006.08569
https://arxiv.org/abs/2001.02817

Strongly Local Hypergraph Diffusions for Clustering and Semi-supervised Learning WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

that д′i = ρκdi . Then the new д′i can be written as

д′i =
1
γ

∑
b ∈Vb

wbi (xb −xi −∆xi)+ −
1
γ

∑
a∈Va

wia (xi +∆xi −xa)++

κdi (Ind[i ∈ R] − xi − ∆xi) (14)
Note д′i is a decreasing function of ∆xi and д′i > 0 when ∆xi = 0,
д′i < 0 when ∆xi = 1 by using Lemma A.2. This suggests that there
exists a unique ∆xi that satisfies д′i = ρκdi . Moreover, (xb − xi −
∆xi)+ ≥ (xb − xi)+ −∆xi and (xi +∆xi − xa)+ ≤ (xi − xa)+ +∆xi ,
thus we have

ρκdi = д
′
i ≥ дi − 1

γ (
∑
b ∈Vb wbi +

∑
a∈Va wia)∆xi − κdi∆xi

From equation (4.9) of [32],∑
b ∈Vb wbi =

∑
a∈Va wai =

∑
e ∈E,i ∈e fe ({i}) ≤ δdi

Thus, we have di∆xi ≥ дi−д′i
κ+δ/γ >

γκ(1−ρ)
γκ+δ di So the decrease of

| |g| |1 will be at least γκ(1 − ρ)di/(γκ + δ). Since | |g| |1 = vol(R)
initially, we have

∑T
i=1 di ≤ (γκ + δ)vol(R)/γκ(1 − ρ) = O(vol(R)).

B PROOF OF THEOREM 4.2
We first introduce some simplifying notation. We use 1v to denote
the canonical basis with vth component as 1 and others as 0 and
1S =

∑
v ∈S 1v . Without loss of generality, we assume each gadget

reduced from a hyperedge has weight ce = 1. Otherwise one can
simply add ce as the coefficients and nothing needs to change.
We omit the degree regularization term in (6). Furthermore, we
normalize the seeds to guarantee

∑
v ∈V dvxv = 1 and group terms

in (6) to remove the source xs = 1 and sink xt = 0

minimize
x

Q(x) ≜ γ
∑
v ∈V

dv

(
xv − 1

vol(S)1S
)2
+

∑
e ∈E

Qe (x)

(15)
where
Qe (x) ≜ min

x (e)a ,x (e)b

∑
v∈e

[
(xv − x (e)a)2+ + (x (e)b − xv)2+

]
+ δe (x (e)a − x (e)b)2+ . (16)

We denote M = vol(H) = ∑
v ∈V dv . We denote the solution x

with the parameter γ and the seed set S of the optimization (15)
as x(γ , S) and its component for node v as xv (γ , S). We also define
another degree weighted vector p = Dx, where D is the diagonal
degree matrix. For a vector p and a node set S ′, we use p(S ′) to
denote p(S ′) = ∑

v ∈S ′ pv . It is easy to check that p(γ , S)(V) = 1 for
any S . For a node set S , define ∂S = {e ∈ E|e ∩ S , ∅, e ∩V \S , ∅}.

We now define our main tool: the Lovász-Simonovits Curve.
Definition B.1 (Lovász-Simonovits Curve (LSC)). Given an x, we

order its components from large to small by breaking equality
arbitrarily, say x1,x2,,xn w.l.o.g, and define Sxj = {x1, ...,x j }.
LSC defines a corresponding piece-wise function Ix : [0,M] → R
s.t Ix(0) = 0, Ix(vol(G)) = 1 and I (vol(Sxj)) = p(Sxj). And for any
k ∈ [vol(Sxj), vol(Sxj+1)],

Ix(k) = Ix(vol(Sxj)) + (k − vol(Sxj))x j .
Our proof depends on the following two Lemma B.2 and B.3 that

will characterize the upper and lower bound of Ix, which finally
leads to the main theorem.

Lemma B.2. For a set S , given an x = x(γ , S), let ϕx and Sx be the
minimal conductance and the node set obtained through a sweep-cut
over x. For any integer t > 0 and k ∈ [0,M], the following bound
holds

Ix(k) ≤ k

M
+

γ t

2 + γ +

√
min(k,M − k)

mini ∈S di
(1 − σ 2

xϕ
2
x

8)t

where σx = (2 maxe ∈∂Sx min{δe , |e |/2} + 1)−1.

Lemma B.3. For a set S , if a node v ∈ S is sampled according to a
distribution P s.t

Ev∼P[p(γ , {v})(S̄)] ≤ cp(γ , S)(S̄), (17)

where c is a constant, then with probability at least 1
2 , one has

p(γ , {v})(S) ≥ 1 − 2cϕ(S)/γ .
Lemma B.3 gives the lower bound Ix(γ , {v })(vol(S)) as this value

is no less than p(γ , {v})(S). Note that the sampling assumption of
Lemma B.3 is natural in the standard graph case, when P samples
each node proportionally to its degree, we have an equality with
c = 1 in (17). Combining Lemma B.2 and B.3, we arrive at

Theorem B.4. Given a set S∗ of vertices s.t. vol(S∗) ≤ M
2 and

ϕ(S∗) ≤ γ
8c for some positive constants γ , c . If there exists a distribu-

tion P s.t. Ev∼P[p(γ , {v})](S̄∗) ≤ cp(γ , S∗)(S̄∗), then with probability
at least 1

2 , the obtained conductance satisfies

ϕx ≤
√

32γ max
e ∈∂Sx

min
{
δe ,
|e |
2

}
ln

(
100vol(S

∗)
dv

)
,

where x = x(γ , {v}) and v is sampled from P. Sx is the node set
obtained via the sweep-cut over x.

Proof. We combine Lemma B.3 and B.2 and use the same tech-
nique as Thm. 17 in [25] (Sec. 7.7.3). □

By removing the normalizing on the number of seeded nodes,
Thm. B.4 becomes Thm. 4.2.

B.1 Proof of Lemma B.2
Define Le (x) ≜ ∇x 1

2Qe (x) (16) and with some algebra, we have

Le (x) =
∑
v ∈e

[
(xv − x (e)∗a)+ − (x (e)∗b − xv)+

]
1v ,

where x (e)∗a and x (e)∗b are the optimal values in (16). In the following,
we will first prove Lemma B.5 and further use it to prove Lemma B.6.
The same proof in Thm. 16 in [25] (Sec. 7.7.2) can be used to leverage
Lemma B.6 to prove Lemma B.2.

Lemma B.5. Given an x, we order its components from large to
small, say x1,x2,,xn w.l.o.g., and define Sxj = {x1, ...,x j }. Define
σx
j = (1 + 2 maxe ∈∂Sx

j
min {δe , |e |/2})−1, and we have

2Ix(vol(Sxj)) − ⟨
∑
e ∈E

Le (x), 1Sx
j
⟩ ≤

Ix(vol(Sxj) − σx
j cut(Sxj)) + Ix(vol(Sxj) + σx

j cut(Sxj)).

2102

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Liu, et al.

Lemma B.6. Suppose x = x(γ , S), x0 = 1S /vol(S) and σx
j = (1 +

2 maxe ∈∂Sx
j

min{δe , |e |/2})−1. We have

Ix(vol(Sxj)) ≤
γ

2 + γ Ix0 (Sx0
j) +

1
2 + γ (Ix(vol(S

x
j) − σx

j cut(Sxj))+

Ix(vol(Sxj) + σx
j cut(Sxj))). (18)

Furthermore, for k ∈ [0,M], Ix(k) ≤ Ix0 (k).
Proof of Lemma B.5. Given a hyperedge e , we order {xv | v ∈

e} from large to small by breaking equality arbitrarily and obtain
x
(e)
1 ,x

(e)
2 , ...,x

(e)
e . Suppose x (e)k ∈ Sxj and x (e)k+1 < S

x
j . Then,

⟨Le (x), 1Sx
j
⟩ =

k∑
i=1

[(x (e)i − x (e)∗a)+ − (x (e)∗b − x (e)i)+
]

(19)

Next, we will bound (19) by analyzing three cases. We only focus
on x

(e)∗
a > x

(e)∗
b and otherwise xv ’s are constant for all v ∈ e . Also

denote k+ = max{i | x (e)i > x
(e)∗
a }, k− = min{e + 1 − i | x (e)i <

x
(e)∗
b }, and k− = |e | + 1 − k−. By the optimality of x (e)∗a , x

(e)∗
b , we

have
x
(e)∗
a = (k− + δe)Xk+

1 + δeX
|e |
k− , x

(e)∗
b = δeX

k+
1 + (k+ + δe)X

|e |
k− ,

where X i2
i1
= (k+k− + δe (k+ + k−))−1 ∑i2

i=i1
x
(e)
i .

Thus, we have

⟨Le (x), 1Sxj ⟩=

[(k+ − k)(k− + δe) + k−δe]X k
1 ifk ≤ k+

−k (k− + δe)X k+
k+1 − kδeX

|e |
k−,

k−δeX k+
1 − k+δeX |e |k−, ifk+ ≤ k ≤ k−

(|e | − k)δeX k+
1 + (|e | − k)(k+ + δe)X k

k− ifk ≥ k− .
−[k+δe + (k − k−)(k+ + δe)]X |e |k

(20)
By using the definition of X i2

i1
, noticing that all coefficients on

x
(e)
i ≤ 1 in the left hand side of (20), and a good deal of algebra, we
can further show

k (k+−k)(k−+δe)+k−δe
k+k−+δe (k++k−) ≥ 2

δ ′e+2 min{k, |e | − k, δe } ifk ≤ k+
k+k−δe

k+k−+δe (k++k−) ≥
1

2δ ′e+1 min{k, |e | − k, δe }, ifk+ ≤ k ≤ k−
k−[k+δe+(k−k−)(k++δe)]

k+k−+δe (k++k−) ≥ 2
δ ′e+2 min{k, |e | − k, δe }, ifk ≥ k− .

where δ ′e = min{δe , |e |/2}. In each case of (20), the sum of positive
coefficient before each x

(e)
i equals to the sum of negative coeffi-

cients, which are both lower bounded by 1
2δ ′e+1 times the splitting

cost of e . Therefore,
2Ix(vol(Sxj)) −

∑
e ∈E
⟨Le (x), 1Sx

j
⟩ ≤

Ix(vol(Sxj) − σx
j cut(Sxj)) + Ix(vol(Sxj) + σx

j cut(Sxj)),
where σx

j = 1/(2 maxe ∈∂Sx
j
δ ′e + 1), which concludes the proof.

Proof of Lemma B.6. Compute the derivative ofQ(x) (15) w.r.t.
x and use the optimality of x = x(γ , S) to get 0 = γD(x−x0)+Le (x).
Therefore,the inner product with 1Sx

j

0 = γ (Ix(vol(Sxj)) − Ix0 (vol(Sx0
j))) + ⟨Le (x), 1Sx

j
⟩.

Plug in Lemma B.5 and we achieve (18). By using the concavity of Ix,
we obtain Ix(vol(Sxj)) ≤ Ix0 (vol(Sx0

j)) and therefore Ix(k) ≤ Ix0 (k)
for any k ∈ [0,M].

B.2 Proof of Lemma B.3
If the following LemmaB.7 is true, thenwe haveEv∼P[p(γ , {v})(S̄)] ≤
cp(γ , S)(S̄) = c(1 − p(γ , S)(S)) ≤ cϕ(S)/γ . By using Markov’s in-
equality, with probability 1

2 , we will sample a node v such that
p(γ , {v})(S̄) ≤ 2cϕ(S)/γ , which concludes the proof.

Lemma B.7. For any S ⊂ V , p(γ , S)(S) ≥ 1 − ϕ(S)/γ .
Proof. This mass from the nodes in S to the nodes in S̄ naturally

diffuses from the auxiliary nodes v(e)a to v(e)b for e ∈ ∂S . As need to
lower bound p(γ , S)(S), we may consider fixing xv = 0,∀v ∈ S̄ of
Q(x) and the obtained solution x̃ naturally satisfies

p(γ , S)(S) ≥
∑

v ∈S dv x̃v , where x̃ ≜ arg min
x

Q(x)|xv=0,∀v ∈S̄ .

The optimality of x̃ (e)a , x̃
(e)
b for e ∈ ∂S in this case implies

−∑
v ∈e (x̃v − x̃ (e)a)+ + δe (x̃ (e)a − x̃ (e)b)+ = 0,∑
v ∈e (−x̃v + x̃ (e)b)+ − δe (x̃

(e)
a − x̃ (e)b)+ = 0

As x̃v = 0 for v ∈ e\S and x̃v ≤ 1
vol(S) for v ∈ e ∩ S , we have

x̃
(e)
b ≥ δe

δe + |e\S | x̃
(e)
a , x̃

(e)
a ≤

|e ∩ S |
δe + |e ∩ S |

1
vol(S) ,

and further, ∀e ∈ ∂S ,∑
v ∈e∩S (x̃v − x̃ (e)a)+ = δe (x̃ (e)a − x̃ (e)b)+ (21)

≤ |e ∩ S | |e\S |δe
(δe + |e ∩ S |)(δe + |e\S |)

1
vol(S) ≤

min{|e ∩ S |, |e\S |,δe }
vol(S) .

The optimality of x̃ implies∑
v ∈S

γdv

(
x̃v − 1

vol(S)

)
+

∑
e ∈∂S

∑
v ∈e∩S

(x̃v − x̃ (e)a)+ = 0. (22)

Here we use that
∑
e⊂S

∑
v ∈e [(x̃v − x̃ (e)a)++ (x̃ (e)b − x̃v)+] = 0. Plug

(21) into (22) and we have which concludes the proof.

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Liu, et al.

Proof of Lemma B.5. Given a hyperedge e , we order {xv | v ∈
e} from large to small by breaking equality arbitrarily and obtain
x
(e)
1 , x

(e)
2 , ..., x

(e)
e . Suppose x (e)k ∈ Sxj and x (e)k+1 < S

x
j . Then,

⟨Le (x), 1Sx
j
⟩ =

k∑
i=1

[(x (e)i − x (e)∗a)+ − (x (e)∗b − x (e)i)+
]

(19)

Next, we will bound (19) by analyzing three cases. We only focus
on x

(e)∗
a > x

(e)∗
b and otherwise xv ’s are constant for all v ∈ e . Also

denote k+ = max{i | x (e)i > x
(e)∗
a }, k− = min{e + 1 − i | x (e)i <

x
(e)∗
b }, and k− = |e | + 1 − k−. By the optimality of x (e)∗a , x

(e)∗
b , we

have
x
(e)∗
a = (k− + δe)Xk+

1 + δeX
|e |
k− , x

(e)∗
b = δeX

k+
1 + (k+ + δe)X

|e |
k− ,

where X i2
i1
= (k+k− + δe (k+ + k−))−1 ∑i2

i=i1
x
(e)
i .

Thus, we have

⟨Le (x), 1Sxj ⟩=

[(k+ − k)(k− + δe) + k−δe]X k
1 ifk ≤ k+

−k (k− + δe)X k+
k+1 − kδeX

|e |
k− ,

k−δeX k+
1 − k+δeX |e |k− , ifk+ ≤ k ≤ k−

(|e | − k)δeX k+
1 + (|e | − k)(k+ + δe)X k

k− ifk ≥ k− .
−[k+δe + (k − k−)(k+ + δe)]X |e |k

(20)
By using the definition of X i2

i1
, noticing that all coefficients on

x
(e)
i ≤ 1 in the left hand side of (20), and a good deal of algebra, we
can further show

k (k+−k)(k−+δe)+k−δe
k+k−+δe (k++k−) ≥ 2

δ ′e+2 min{k , |e | − k , δe } ifk ≤ k+
k+k−δe

k+k−+δe (k++k−) ≥
1

2δ ′e+1 min{k , |e | − k , δe }, ifk+ ≤ k ≤ k−
k−[k+δe+(k−k−)(k++δe)]

k+k−+δe (k++k−) ≥ 2
δ ′e+2 min{k , |e | − k , δe }, ifk ≥ k− .

where δ ′e = min{δe , |e |/2}. In each case of (20), the sum of positive
coefficient before each x

(e)
i equals to the sum of negative coeffi-

cients, which are both lower bounded by 1
2δ ′e+1 times the splitting

cost of e . Therefore,
2Ix(vol(Sxj)) −

∑
e ∈E
⟨Le (x), 1Sx

j
⟩ ≤

Ix(vol(Sxj) − σx
j cut(Sxj)) + Ix(vol(Sxj) + σx

j cut(Sxj)),
where σx

j = 1/(2 maxe ∈∂Sx
j
δ ′e + 1), which concludes the proof.

Proof of Lemma B.6. Compute the derivative ofQ(x) (15) w.r.t.
x and use the optimality of x = x(γ , S) to get 0 = γD(x−x0)+Le (x).
Therefore,the inner product with 1Sx

j

0 = γ (Ix(vol(Sxj)) − Ix0 (vol(Sx0
j))) + ⟨Le (x), 1Sx

j
⟩.

Plug in Lemma B.5 and we achieve (18). By using the concavity of Ix,
we obtain Ix(vol(Sxj)) ≤ Ix0 (vol(Sx0

j)) and therefore Ix(k) ≤ Ix0 (k)
for any k ∈ [0,M].

B.2 Proof of Lemma B.3
If the following LemmaB.7 is true, thenwe haveEv∼P[p(γ , {v})(S̄)] ≤
cp(γ , S)(S̄) = c(1 − p(γ , S)(S)) ≤ cϕ(S)/γ . By using Markov’s in-
equality, with probability 1

2 , we will sample a node v such that
p(γ , {v})(S̄) ≤ 2cϕ(S)/γ , which concludes the proof.

Lemma B.7. For any S ⊂ V , p(γ , S)(S) ≥ 1 − ϕ(S)/γ .
Proof. This mass from the nodes in S to the nodes in S̄ naturally

diffuses from the auxiliary nodes v(e)a to v(e)b for e ∈ ∂S . As need to
lower bound p(γ , S)(S), we may consider fixing xv = 0,∀v ∈ S̄ of
Q(x) and the obtained solution x̃ naturally satisfies

p(γ , S)(S) ≥
∑

v ∈S dv x̃v , where x̃ ≜ arg min
x

Q(x)|xv=0,∀v ∈S̄ .

The optimality of x̃ (e)a , x̃
(e)
b for e ∈ ∂S in this case implies

−∑
v ∈e (x̃v − x̃ (e)a)+ + δe (x̃ (e)a − x̃ (e)b)+ = 0,∑
v ∈e (−x̃v + x̃ (e)b)+ − δe (x̃

(e)
a − x̃ (e)b)+ = 0

As x̃v = 0 for v ∈ e\S and x̃v ≤ 1
vol(S) for v ∈ e ∩ S , we have

x̃
(e)
b ≥ δe

δe + |e\S | x̃
(e)
a , x̃

(e)
a ≤

|e ∩ S |
δe + |e ∩ S |

1
vol(S) ,

and further, ∀e ∈ ∂S ,∑
v ∈e∩S (x̃v − x̃ (e)a)+ = δe (x̃ (e)a − x̃ (e)b)+ (21)

≤ |e ∩ S | |e\S |δe
(δe + |e ∩ S |)(δe + |e\S |)

1
vol(S) ≤

min{|e ∩ S |, |e\S |, δe }
vol(S) .

The optimality of x̃ implies∑
v ∈S

γdv

(
x̃v − 1

vol(S)

)
+

∑
e ∈∂S

∑
v ∈e∩S

(x̃v − x̃ (e)a)+ = 0. (22)

Here we use that
∑
e⊂S

∑
v ∈e [(x̃v − x̃ (e)a)++ (x̃ (e)b − x̃v)+] = 0. Plug

(21) into (22) and we have

0≤γ
(∑
v ∈S

dv x̃v − 1
)
+

�����������:ϕ(S)∑
e ∈∂S

min{|e ∩ S |, |e\S |, δe }
vol(S) ,

which concludes the proof.

C SELECTING δ .
To select δ for each dataset, we run LH-2.0 on a handful of alter-
native clusters as we vary δ . Below, we show F1 scores on those
clusters and pick δ = 1 for Amazon and δ = 1000 for Stack Over-
flow.

100 101 102 103 104
0.2
0.4
0.6
0.8

F1

Amazon

100 101 102 103 104

0.2
0.4
0.6

F1

Stack Overflow

C SELECTING δ .
To select δ for each dataset, we run LH-2.0 on a handful of alter-
native clusters as we vary δ . Below, we show F1 scores on those
clusters and pick δ = 1 for Amazon and δ = 1000 for Stack Over-
flow.

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Liu, et al.

Proof of Lemma B.5. Given a hyperedge e , we order {xv | v ∈
e} from large to small by breaking equality arbitrarily and obtain
x
(e)
1 , x

(e)
2 , ..., x

(e)
e . Suppose x (e)k ∈ Sxj and x (e)k+1 < S

x
j . Then,

⟨Le (x), 1Sx
j
⟩ =

k∑
i=1

[(x (e)i − x (e)∗a)+ − (x (e)∗b − x (e)i)+
]

(19)

Next, we will bound (19) by analyzing three cases. We only focus
on x

(e)∗
a > x

(e)∗
b and otherwise xv ’s are constant for all v ∈ e . Also

denote k+ = max{i | x (e)i > x
(e)∗
a }, k− = min{e + 1 − i | x (e)i <

x
(e)∗
b }, and k− = |e | + 1 − k−. By the optimality of x (e)∗a , x

(e)∗
b , we

have
x
(e)∗
a = (k− + δe)Xk+

1 + δeX
|e |
k− , x

(e)∗
b = δeX

k+
1 + (k+ + δe)X

|e |
k− ,

where X i2
i1
= (k+k− + δe (k+ + k−))−1 ∑i2

i=i1
x
(e)
i .

Thus, we have

⟨Le (x), 1Sxj ⟩=

[(k+ − k)(k− + δe) + k−δe]X k
1 ifk ≤ k+

−k (k− + δe)X k+
k+1 − kδeX

|e |
k− ,

k−δeX k+
1 − k+δeX |e |k− , ifk+ ≤ k ≤ k−

(|e | − k)δeX k+
1 + (|e | − k)(k+ + δe)X k

k− ifk ≥ k− .
−[k+δe + (k − k−)(k+ + δe)]X |e |k

(20)
By using the definition of X i2

i1
, noticing that all coefficients on

x
(e)
i ≤ 1 in the left hand side of (20), and a good deal of algebra, we
can further show

k (k+−k)(k−+δe)+k−δe
k+k−+δe (k++k−) ≥ 2

δ ′e+2 min{k , |e | − k , δe } ifk ≤ k+
k+k−δe

k+k−+δe (k++k−) ≥
1

2δ ′e+1 min{k , |e | − k , δe }, ifk+ ≤ k ≤ k−
k−[k+δe+(k−k−)(k++δe)]

k+k−+δe (k++k−) ≥ 2
δ ′e+2 min{k , |e | − k , δe }, ifk ≥ k− .

where δ ′e = min{δe , |e |/2}. In each case of (20), the sum of positive
coefficient before each x

(e)
i equals to the sum of negative coeffi-

cients, which are both lower bounded by 1
2δ ′e+1 times the splitting

cost of e . Therefore,
2Ix(vol(Sxj)) −

∑
e ∈E
⟨Le (x), 1Sx

j
⟩ ≤

Ix(vol(Sxj) − σx
j cut(Sxj)) + Ix(vol(Sxj) + σx

j cut(Sxj)),
where σx

j = 1/(2 maxe ∈∂Sx
j
δ ′e + 1), which concludes the proof.

Proof of Lemma B.6. Compute the derivative ofQ(x) (15) w.r.t.
x and use the optimality of x = x(γ , S) to get 0 = γD(x−x0)+Le (x).
Therefore,the inner product with 1Sx

j

0 = γ (Ix(vol(Sxj)) − Ix0 (vol(Sx0
j))) + ⟨Le (x), 1Sx

j
⟩.

Plug in Lemma B.5 and we achieve (18). By using the concavity of Ix,
we obtain Ix(vol(Sxj)) ≤ Ix0 (vol(Sx0

j)) and therefore Ix(k) ≤ Ix0 (k)
for any k ∈ [0,M].

B.2 Proof of Lemma B.3
If the following LemmaB.7 is true, thenwe haveEv∼P[p(γ , {v})(S̄)] ≤
cp(γ , S)(S̄) = c(1 − p(γ , S)(S)) ≤ cϕ(S)/γ . By using Markov’s in-
equality, with probability 1

2 , we will sample a node v such that
p(γ , {v})(S̄) ≤ 2cϕ(S)/γ , which concludes the proof.

Lemma B.7. For any S ⊂ V , p(γ , S)(S) ≥ 1 − ϕ(S)/γ .
Proof. This mass from the nodes in S to the nodes in S̄ naturally

diffuses from the auxiliary nodes v(e)a to v(e)b for e ∈ ∂S . As need to
lower bound p(γ , S)(S), we may consider fixing xv = 0,∀v ∈ S̄ of
Q(x) and the obtained solution x̃ naturally satisfies

p(γ , S)(S) ≥
∑

v ∈S dv x̃v , where x̃ ≜ arg min
x

Q(x)|xv=0,∀v ∈S̄ .

The optimality of x̃ (e)a , x̃
(e)
b for e ∈ ∂S in this case implies

−∑
v ∈e (x̃v − x̃ (e)a)+ + δe (x̃ (e)a − x̃ (e)b)+ = 0,∑
v ∈e (−x̃v + x̃ (e)b)+ − δe (x̃

(e)
a − x̃ (e)b)+ = 0

As x̃v = 0 for v ∈ e\S and x̃v ≤ 1
vol(S) for v ∈ e ∩ S , we have

x̃
(e)
b ≥ δe

δe + |e\S | x̃
(e)
a , x̃

(e)
a ≤

|e ∩ S |
δe + |e ∩ S |

1
vol(S) ,

and further, ∀e ∈ ∂S ,∑
v ∈e∩S (x̃v − x̃ (e)a)+ = δe (x̃ (e)a − x̃ (e)b)+ (21)

≤ |e ∩ S | |e\S |δe
(δe + |e ∩ S |)(δe + |e\S |)

1
vol(S) ≤

min{|e ∩ S |, |e\S |, δe }
vol(S) .

The optimality of x̃ implies∑
v ∈S

γdv

(
x̃v − 1

vol(S)

)
+

∑
e ∈∂S

∑
v ∈e∩S

(x̃v − x̃ (e)a)+ = 0. (22)

Here we use that
∑
e⊂S

∑
v ∈e [(x̃v − x̃ (e)a)++ (x̃ (e)b − x̃v)+] = 0. Plug

(21) into (22) and we have

0≤γ
(∑
v ∈S

dv x̃v − 1
)
+

�����������:ϕ(S)∑
e ∈∂S

min{|e ∩ S |, |e\S |, δe }
vol(S) ,

which concludes the proof.

C SELECTING δ .
To select δ for each dataset, we run LH-2.0 on a handful of alter-
native clusters as we vary δ . Below, we show F1 scores on those
clusters and pick δ = 1 for Amazon and δ = 1000 for Stack Over-
flow.

100 101 102 103 104
0.2
0.4
0.6
0.8

F1

Amazon

100 101 102 103 104

0.2
0.4
0.6

F1

Stack Overflow

2103

	Abstract
	1 Introduction
	2 Notation and Preliminaries
	3 Method
	3.1 Hypergraph-to-graph reductions
	3.2 Localized Quadratic Hypergraph Diffusions
	3.3 A strongly local solver for LHQD (6)

	4 Local conductance approximation
	5 Directly Related work
	6 Generalization to p-norms
	7 Experiments
	7.1 Detecting Amazon Product Categories
	7.2 Detecting Stack Overflow Question Topics
	7.3 Varying Number of Seeds

	8 DISCUSSION
	References
	A Proof of Theorem 3.5
	B Proof of Theorem 4.2
	B.1 Proof of Lemma B.2
	B.2 Proof of Lemma B.3

	C Selecting .

